Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands

Autor: Jakob Fester, Zhongshan Li, Lutz Lammich, Alex S. Walton, Aleksandra Vojvodic, Max García-Melchor, Jeppe V. Lauritsen, Michal Bajdich
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Nature Communications, Vol 8, Iss 1, Pp 1-8 (2017)
Fester, J, García-Melchor, M, Walton, A S, Bajdich, M, Li, Z, Lammich, L, Vojvodic, A & Lauritsen, J V 2017, ' Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands ', Nature Communications, vol. 8, pp. 14169 EP-. https://doi.org/10.1038/ncomms14169
Fester, J, García-Melchor, M, Walton, A S, Bajdich, M, Li, Z, Lammich, L, Vojvodic, A & Lauritsen, J V 2017, ' Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands ', Nature Communications, vol. 8, 14169 . https://doi.org/10.1038/ncomms14169
Nature Communications
ISSN: 2041-1723
DOI: 10.1038/ncomms14169
Popis: Transition metal oxides show great promise as Earth-abundant catalysts for the oxygen evolution reaction in electrochemical water splitting. However, progress in the development of highly active oxide nanostructures is hampered by a lack of knowledge of the location and nature of the active sites. Here we show, through atom-resolved scanning tunnelling microscopy, X-ray spectroscopy and computational modelling, how hydroxyls form from water dissociation at under coordinated cobalt edge sites of cobalt oxide nanoislands. Surprisingly, we find that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the important assisting role of a water molecule in its own dissociation process on a metal oxide. Inspired by the experimental findings, we theoretically model the oxygen evolution reaction activity of cobalt oxide nanoislands and show that the nanoparticle metal edges also display favourable adsorption energetics for water oxidation under electrochemical conditions.
Earth abundant transition metal oxides show great promise as catalysts for the oxygen evolution reaction. Here, the authors reveal a self-assisted water dissociation mechanism and favourable theoretical adsorption energetics for water oxidation at the edge sites of cobalt oxide nano-islands.
Databáze: OpenAIRE