K3 surfaces with Picard number 2, Salem polynomials and Pell equation
Autor: | Kenji Hashimoto, JongHae Keum, Kwangwoo Lee |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Algebra and Number Theory 010102 general mathematics Automorphism 01 natural sciences K3 surface Mathematics - Algebraic Geometry Mathematics::Group Theory Mathematics::Algebraic Geometry 0103 physical sciences Pell's equation FOS: Mathematics Order (group theory) 010307 mathematical physics 0101 mathematics Mathematics::Symplectic Geometry Algebraic Geometry (math.AG) Mathematics Symplectic geometry |
DOI: | 10.48550/arxiv.1711.02822 |
Popis: | If an automorphism of a projective K3 surface with Picard number 2 is of infinite order, then the automorphism corresponds to a solution of Pell equation. In this paper, by solving this equation, we determine all Salem polynomials of symplectic and anti-symplectic automorphisms of projective K3 surfaces with Picard number 2. |
Databáze: | OpenAIRE |
Externí odkaz: |