Hopf bifurcations in Lengyel–Epstein reaction–diffusion model with discrete time delay
Autor: | Hüseyin Merdan, S. Kayan |
---|---|
Přispěvatelé: | TOBB ETU, Faculty of Science and Literature, Depertment of Mathematics, TOBB ETÜ, Fen Edebiyat Fakültesi, Matematik Bölümü, Merdan, Hüseyin |
Rok vydání: | 2014 |
Předmět: |
Hopf bifurcation
Periodic solutions Applied Mathematics Mechanical Engineering Mathematical analysis Aerospace Engineering Ocean Engineering Saddle-node bifurcation Bifurcation diagram Biological applications of bifurcation theory Nonlinear Sciences::Chaotic Dynamics symbols.namesake Transcritical bifurcation Pitchfork bifurcation Control and Systems Engineering symbols Bogdanov–Takens bifurcation Electrical and Electronic Engineering Stability Nonlinear Sciences::Pattern Formation and Solitons Time delay Center manifold Lengyel-Epstein reaction-diffusion model Mathematics |
Zdroj: | Nonlinear Dynamics. 79:1757-1770 |
ISSN: | 1573-269X 0924-090X |
DOI: | 10.1007/s11071-014-1772-8 |
Popis: | We investigate bifurcations of the Lengyel-Epstein reaction-diffusion model involving time delay under the Neumann boundary conditions. Choosing the delay parameter as a bifurcation parameter, we show that Hopf bifurcation occurs. We also determine two properties of the Hopf bifurcation, namely direction and stability, by applying the normal form theory and the center manifold reduction for partial functional differential equations. |
Databáze: | OpenAIRE |
Externí odkaz: |