In inhomogeneity and emission characteristics of InGaN
Autor: | Kunimichi Omae, Koichi Okamoto, Takashi Mukai, Yukio Narukawa, Yoichi Kawakami, Akio Kaneta, Shigeo Fujita |
---|---|
Rok vydání: | 2001 |
Předmět: |
Indium nitride
Photoluminescence business.industry Exciton Condensed Matter Physics Molecular physics law.invention chemistry.chemical_compound chemistry law Optoelectronics General Materials Science Spontaneous emission Stimulated emission business Lasing threshold Quantum well Light-emitting diode |
Zdroj: | Journal of Physics: Condensed Matter. 13:6993-7010 |
ISSN: | 1361-648X 0953-8984 |
DOI: | 10.1088/0953-8984/13/32/308 |
Popis: | Recombination dynamics of spontaneous and stimulated emissions have been assessed in InGaN-based light emitting diodes (LEDs) and laser diodes (LDs), by employing time-resolved photoluminescence and pump and probe spectroscopy. As for an In0.02Ga0.98N ultraviolet LED, excitons are weakly localized by 15 meV at low temperature, but they become almost free at room temperature (RT). It was found that addition of a small amount of In results in the reduction of nonradiative recombination centres originating from point defects. The internal electric field does exist in InGaN active layers, and induces a large modification of excitonic transitions. However, it alone does not explain the feature of spontaneous emission observed in an In0.3Ga0.7N blue LED such as an anomalous temperature dependence of peak energy, almost temperature independence of radiative lifetimes and mobility-edge type behaviour, indicating an important role of exciton localization. The lasing mechanism was investigated for In0.1Ga0.9N near ultraviolet (390 nm), In0.2Ga0.8N violet-blue (420 nm) and In0.3Ga0.7N blue (440 nm) LDs. The optical gain was contributed from the nearly delocalized states (the lowest quantized levels (LQLs) within quantum wells) in the violet LD, while it was from highly localized levels with respect to the LQL by 250 meV for the violet-blue LD, and by 500 meV for the blue LD. It was found that the photo-generated carriers rapidly (less than 1 ps) transferred to the LQL, and then relaxed to the localized tail within the timescale of a few ps, giving rise to the optical gain. Such gain spectra were saturated and other bands appeared in the vicinity of the LQL under higher photo-excitation. |
Databáze: | OpenAIRE |
Externí odkaz: |