Calcium phosphate cements: Optimization toward biodegradability

Autor: John A. Jansen, I. Lodoso-Torrecilla, J.J.J.P van den Beucken
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Rok vydání: 2021
Předmět:
Calcium Phosphates
Ceramics
Bone Regeneration
Materials science
0206 medical engineering
Biomedical Engineering
chemistry.chemical_element
Biocompatible Materials
02 engineering and technology
Calcium
Enginyeria dels materials [Àrees temàtiques de la UPC]
Biochemistry
Bone cements
Biomaterials
macroporosity
Degradation
Time windows
Materials Testing
medicine
Bone formation
Tissue engineering
Molecular Biology
Macroporosity
degradation
Bone Cements
General Medicine
Biodegradation
021001 nanoscience & nanotechnology
Bone defect
020601 biomedical engineering
Calcium phosphate cements
Reconstructive and regenerative medicine Radboud Institute for Molecular Life Sciences [Radboudumc 10]
medicine.anatomical_structure
chemistry
Calcium phosphate
Enginyeria de teixits
Irregular bone
Invasive surgery
Ciments ossis
0210 nano-technology
Fosfat de calci
Biotechnology
Biomedical engineering
Zdroj: ACTA BIOMATERIALIA
r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu
instname
Acta Biomaterialia, 119, 1-12
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Acta Biomaterialia, 119, pp. 1-12
ISSN: 1742-7061
Popis: Contains fulltext : 229128.pdf (Publisher’s version ) (Open Access) Synthetic calcium phosphate (CaP) ceramics represent the most widely used biomaterials for bone regenerative treatments due to their biological performance that is characterized by bioactivity and osteoconductive properties. From a clinical perspective, injectable CaP cements (CPCs) are highly appealing, as CPCs can be applied using minimally invasive surgery and can be molded to optimally fill irregular bone defects. Such CPCs are prepared from a powder and a liquid component, which upon mixing form a paste that can be injected into a bone defect and hardens in situ within an appropriate clinical time window. However, a major drawback of CPCs is their poor degradability. Ideally, CPCs should degrade at a suitable pace to allow for concomitant new bone to form. To overcome this shortcoming, control over CPC degradation has been explored using multiple approaches that introduce macroporosity within CPCs. This strategy enables faster degradation of CPC by increasing the surface area available to interact with the biological surroundings, leading to accelerated new bone formation. For a comprehensive overview of the path to degradable CPCs, this review presents the experimental procedures followed for their development with specific emphasis on (bio)material properties and biological performance in pre-clinical bone defect models.
Databáze: OpenAIRE