In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering

Autor: José Darío Sánchez-López, Juan D. G. Durán, Ana B. Bonhome-Espinosa, Víctor Carriel, Daniel Durand-Herrera, Sébastien Schaub, Fernando Campos, Modesto T. López-López
Přispěvatelé: Institut de Biologie Valrose (IBV), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Departamento de Fisica Aplicada [Granada], Universidad de Granada (UGR)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of the mechanical behavior of biomedical materials
Journal of the mechanical behavior of biomedical materials, Elsevier, 2020, 104, pp.103619. ⟨10.1016/j.jmbbm.2020.103619⟩
Digibug. Repositorio Institucional de la Universidad de Granada
instname
Digibug: Repositorio Institucional de la Universidad de Granada
Universidad de Granada (UGR)
ISSN: 1751-6161
1878-0180
DOI: 10.1016/j.jmbbm.2020.103619⟩
Popis: The encapsulation of cells into biopolymer matrices enables the preparation of engineered substitute tissues. Here we report the generation of novel 3D magnetic biomaterials by encapsulation of magnetic nanoparticles and human hyaline chondrocytes within fibrin-agarose hydrogels, with potential use as articular hyaline cartilagelike tissues. By rheological measurements we observed that, (i) the incorporation of magnetic nanoparticles resulted in increased values of the storage and loss moduli for the different times of cell culture; and (ii) the incorporation of human hyaline chondrocytes into nonmagnetic and magnetic fibrin-agarose biomaterials produced a control of their swelling capacity in comparison with acellular nonmagnetic and magnetic fibrin-agarose biomaterials. Interestingly, the in vitro viability and proliferation results showed that the inclusion of magnetic nanoparticles did not affect the cytocompatibility of the biomaterials. What is more, immunohistochemistry showed that the inclusion of magnetic nanoparticles did not negatively affect the expression of type II collagen of the human hyaline chondrocytes. Summarizing, our results suggest that the generation of engineered hyaline cartilage-like tissues by using magnetic fibrin-agarose hydrogels is feasible. The resulting artificial tissues combine a stronger and stable mechanical response, with promising in vitro cytocompatibility. Further research would be required to elucidate if for longer culture times additional features typical of the extracellular matrix of cartilage could be expressed by human hyaline chondrocytes within magnetic fibrin-agarose hydrogels.
This study was supported by projects FIS2013-41821-R (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía, Industria y Competitividad, MINECO Spain, cofunded by Fondo Europeo de Desarrollo Regional, FEDER, European Union), FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación, AEI, Spain, cofunded by Fondo Europeo de Desarrollo Regional, FEDER, European Union), and by the Consejería de Salud y Familias, Junta de Andalucía, Spain, Grant SAS CS PI-0257-2017.
Databáze: OpenAIRE