Tusnády’s inequality revisited

Autor: David Pollard, Andrew V. Carter
Jazyk: angličtina
Rok vydání: 2004
Předmět:
Zdroj: Ann. Statist. 32, no. 6 (2004), 2731-2741
Popis: Tusnady's inequality is the key ingredient in the KMT/Hungarian coupling of the empirical distribution function with a Brownian bridge. We present an elementary proof of a result that sharpens the Tusnady inequality, modulo constants. Our method uses the beta integral representation of Binomial tails, simple Taylor expansion and some novel bounds for the ratios of normal tail probabilities.
Comment: Published at http://dx.doi.org/10.1214/009053604000000733 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Databáze: OpenAIRE