Universality of High-Strength Tensors

Autor: Arthur Bik, Rob H. Eggermont, Alessandro Danelon, Jan Draisma
Přispěvatelé: Discrete Algebra and Geometry, Coding Theory and Cryptology
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Vietnam Journal of Mathematics, 50(2), 557-580. Springer
Bik, Arthur; Danelon, Alessandro; Draisma, Jan; Eggermont, Rob H (2022). Universality of High-Strength Tensors. Vietnam journal of mathematics, 50(2), pp. 557-580. Springer 10.1007/s10013-021-00522-7
ISSN: 2305-2228
2305-221X
Popis: A theorem due to Kazhdan and Ziegler implies that, by substituting linear forms for its variables, a homogeneous polynomial of sufficiently high strength specialises to any given polynomial of the same degree in a bounded number of variables. Using entirely different techniques, we extend this theorem to arbitrary polynomial functors. As a corollary of our work, we show that specialisation induces a quasi-order on elements in polynomial functors, and that among the elements with a dense orbit there are unique smallest and largest equivalence classes in this quasi-order.
Comment: 19 pages
Databáze: OpenAIRE