Acholeplasma laidlawii B-PG9 adenine-specific purine nucleoside phosphorylase that accepts ribose-1-phosphate, deoxyribose-1-phosphate, and xylose-1-phosphate

Autor: J. D. Pollack, M. C. McELWAIN, M V Williams
Rok vydání: 1988
Předmět:
Zdroj: Journal of Bacteriology. 170:564-567
ISSN: 1098-5530
0021-9193
DOI: 10.1128/jb.170.2.564-567.1988
Popis: An adenylate-specific purine nucleoside phosphorylase (purine nucleoside:orthophosphate ribosyltransferase, EC12.4.2.1) (PNP) was isolated from a cytoplasmic fraction of Acholeplasma laidlawii B-PG9 and partially purified (820-fold). This partially purified PNP could only ribosylate adenine and deribosylate adenosine and deoxyadenosine. The A. laidlawii partially purified PNP could not use hypoxanthine, guanine, uracil, guanosine, deoxyguanosine, or inosine as substrates, but could use ribose-1-phosphate, deoxyribose-1-phosphate, or xylose-1-phosphate as the pentose donor. Mg2+ and a pH of 7.6 were required for maximum activity for each of the pentoses. The partially purified enzyme in sucrose density gradient experiments had an approximate molecular weight of 108,000 and a sedimentation coefficient of 6.9, and in gel filtration experiments it had an approximate molecular weight of 102,000 and a Stoke's radius of 4.1 nm. Nondenaturing polyacrylamide tube gels of the enzyme preparation produced one major and one minor band. The major band (Rf, 0.57) corresponded to all enzyme activity. The Kms for the partially purified PNP with ribose-1-phosphate, deoxyribose-1-phosphate, and xylose-1-phosphate were 0.80, 0.82, and 0.81 mM, respectively. The corresponding Vmaxs were 12.5, 14.3, and 12.0 microM min-1, respectively. The Hill or interaction coefficients (n) for all three pentose phosphates were close to unity. The characterization data suggest the possibility of one active site on the enzyme which is equally reactive toward each of the three pentoses. This is the first report of an apparently adenine-specific PNP activity.
Databáze: OpenAIRE