Sensor position influence on modeling and control of 155mm canard-guided spin-stabilized projectiles
Autor: | Florian Sève, Spilios Theodoulis, Philippe Wernert, Michel Zasadzinski, Mohamed Boutayeb |
---|---|
Přispěvatelé: | Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut franco-allemand de recherches de Saint-Louis (ISL), DGA-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2014 |
Předmět: |
Aircraft flight mechanics
Operating point Engineering Flight Mechanics business.industry Control engineering [SPI.AUTO]Engineering Sciences [physics]/Automatic law.invention LPV Systems Guided Projectile Gain scheduling Position (vector) Control theory law Sensor Location Autopilot Trajectory Robust control Autopilot Design business Robust Control Gain-scheduling |
Zdroj: | CoDIT International Conference on Control, Decision and Information Technologies, CoDIT'14 International Conference on Control, Decision and Information Technologies, CoDIT'14, Nov 2014, Metz, France |
DOI: | 10.1109/codit.2014.6996920 |
Popis: | International audience; This article explores in detail the influence of the sensor position on the pitch/yaw dynamics modeling and on the autopilot design and performance for a 155mm canard-guided spin-stabilized projectile which incorporates a nose-mounted course correction fuse (CCF) for trajectory correction. A complete and exact nonlinear model is given and used for computing a q-LPV model necessary for the controller synthesis. Using this linearized model, the influence of the sensor position on the load factor-related open-loop dynamics is highlighted. The H∞ loop-shaping design approach, which permits to obtain a high-performance, robust, fixed structure and fixed order controller for any operating point, is presented. The necessity, for the controller synthesis, of considering the actual sensor position in the projectile nose and of calculating the load factor feedback signals at the center of gravity (CG) using the load factors actually measured at the CCF, in order to cope with this important practical constraint, is demonstrated. |
Databáze: | OpenAIRE |
Externí odkaz: |