Minimal Injury Risk Motion Planning using Active Mitigation and Sampling Model Predictive Control

Autor: Luiz Alberto Serafim Guardini, Anne Spalanzani, Philippe Martinet, Christian Laugier, Thomas Genevois, Anh-Lam Do
Přispěvatelé: Robots coopératifs et adaptés à la présence humaine en environnements (CHROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), Intelligence artificielle et algorithmes efficaces pour la robotique autonome (ACENTAURI), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Signal, Images et Systèmes (Laboratoire I3S - SIS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Technocentre Renault [Guyancourt], RENAULT
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: ITSC 2022-25th IEEE Intelligent Transportation Systems Conference
ITSC 2022-25th IEEE Intelligent Transportation Systems Conference, Oct 2022, Macao, China. pp.1-6
Popis: International audience; Collision mitigation is an important element in motion planning. Although Advanced Driver-Assistance Systems (ADAS) have a rich number of functionalities, they lack interchangeability. There is still a gap on finding a way to evaluate the best decision globally. This paper presents a novel motion planning framework to generate emergency maneuvers in complex and risky scenarios using active mitigation. The classical Model Predictive Path Integral (MPPI) algorithm is improved to be used in a probabilistic dynamic cost map under limited perception range. A cost map with global probability of injury to all road users is used as a constraint to the problem in order to compute target selection based on the global minimum risk considering all road users. Real experiments introduce the use of augmented sensor data by merging simulation and real sensor data to safely produce collision and mitigation experiments. Results show that the proposed algorithm can perform correctly in real time on board of the vehicle, by finding collision-free trajectories in complex scenarios and compute viable target selection that minimizes global injury risk when collision is inevitable.
Databáze: OpenAIRE