Quadrature formulas for integrals transforms generated by orthogonal polynomials
Autor: | Rafael G. Campos, E. Coronado, Francisco Javier Domínguez Mota |
---|---|
Rok vydání: | 2008 |
Předmět: |
Hermite polynomials
33C45 33C47 44A20 65D32 Gegenbauer polynomials Applied Mathematics General Mathematics Discrete orthogonal polynomials Mathematical analysis Mathematics::Classical Analysis and ODEs Numerical Analysis (math.NA) Classical orthogonal polynomials Computational Mathematics symbols.namesake Wilson polynomials Orthogonal polynomials Laguerre polynomials symbols FOS: Mathematics Jacobi polynomials Mathematics - Numerical Analysis Mathematics |
DOI: | 10.48550/arxiv.0805.2111 |
Popis: | By using the three-term recurrence equation satisfied by a family of orthogonal polynomials, the Christoffel-Darboux-type bilinear generating function and their asymptotic expressions, we obtain quadrature formulas for integral transforms generated by the classical orthogonal polynomials. These integral transforms, related to the so-called Poisson integrals, correspond to a modified Fourier Transform in the case of the Hermite polynomials, a Bessel Transform in the case of the Laguerre polynomials and to an Appell Transform in the case of the Jacobi polynomials. Comment: 3 figures, 11 pages |
Databáze: | OpenAIRE |
Externí odkaz: |