Enriques involutions on singular K3 surfaces of small discriminants

Autor: Davide Cesare Veniani, Ichiro Shimada
Rok vydání: 2020
Předmět:
Zdroj: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :1667-1701
ISSN: 2036-2145
0391-173X
DOI: 10.2422/2036-2145.201902_004
Popis: We classify Enriques involutions on a K3 surface, up to conjugation in the automorphism group, in terms of lattice theory. We enumerate such involutions on singular K3 surfaces with transcendental lattice of discriminant smaller than or equal to 36. For 11 of these K3 surfaces, we apply Borcherds method to compute the automorphism group of the Enriques surfaces covered by them. In particular, we investigate the structure of the two most algebraic Enriques surfaces.
Comment: 33 pages, 3 figures, 6 tables
Databáze: OpenAIRE