Trace-Based Decision Making in Interactive Application: Case of Tamagotchi systems

Autor: Mourad Rabah, Hoang Nam Ho, Pascal Estraillier, Samuel Nowakowski
Přispěvatelé: Laboratoire Informatique, Image et Interaction - EA 2118 (L3I), Université de La Rochelle (ULR), Knowledge Information and Web Intelligence (KIWI), Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Ho, Hoang-Nam, La Rochelle Université (ULR)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: IEEE International Conference on Control, Decision and Information Technologies
IEEE International Conference on Control, Decision and Information Technologies, Nov 2014, Metz, France. pp.123-127
CoDIT
Popis: International audience; — We present our exploratory work for situation preselecting in interactive applications, assuming that the application is an Interactive Adaptive System based on a sequence of contextualized "situations". Each situation confines activities and interactions related to a common context, resources and system actors. When one situation is completed, the system has to determine which is the best following one. We introduce in this paper a new preselecting method that identifies possible next situations among all available situations. We propose a strategy using Naïve Bayes based on the analysis of the sets of available traces (the past of users). Combining all obtained results, we get a set of situations, called set of alternatives that can be used in any decision algorithm. We demonstrate our approach on a case study based on Tamagotchi game.
Databáze: OpenAIRE