Two machine learning methods identify a metastasis-related prognostic model that predicts overall survival in medulloblastoma patients
Autor: | Liang Wei, Shan Yan, Keqin Li, Min Liu, Chunlong Zhong, Zhongwei Zhuang, Kui Chen, Siyi Xu, Bingsong Huang, Qi Wang, Yanfei Zhang, Kuiming Zhang, Hao Lian |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Adult
Male Aging Multivariate statistics Adolescent overall survival Clinical Decision-Making Machine learning computer.software_genre medulloblastoma Risk Assessment Decision Support Techniques Machine Learning Young Adult Lasso (statistics) Predictive Value of Tests Risk Factors Databases Genetic medicine Biomarkers Tumor prognostic model Humans Cerebellar Neoplasms Child Medulloblastoma Receiver operating characteristic Proportional hazards model business.industry Gene Expression Profiling Area under the curve Univariate Infant Reproducibility of Results Cell Biology Nomogram Middle Aged medicine.disease Prognosis Nomograms Child Preschool Female Artificial intelligence business Transcriptome computer Research Paper |
Zdroj: | Aging (Albany NY) |
ISSN: | 1945-4589 |
Popis: | Approximately 30% of medulloblastoma (MB) patients exhibit metastasis at initial diagnosis, which often leads to a poor prognosis. Here, by using univariate Cox regression analysis, two machine learning methods (Lasso-penalized Cox regression and random survival forest-variable hunting (RSF-VH)), and multivariate Cox regression analysis, we established two metastasis-related prognostic models, including the 47-mRNA-based model based on the Lasso method and the 21-mRNA-based model based on the RSF-VH method. In terms of the results of the receiver operating characteristic (ROC) curve analyses, we selected the 47-mRNA metastasis-associated model with the higher area under the curve (AUC). The 47-mRNA-based prognostic model could classify MB patients into two subgroups with different prognoses. The ROC analyses also suggested that the 47-mRNA metastasis-associated model may have a better predictive ability than MB subgroup. Multivariable Cox regression analysis demonstrated that the 47-mRNA-based model was independent of other clinical characteristics. In addition, a nomogram comprising the 47-mRNA-based model was built. The results of ROC analyses suggested that the nomogram had good discrimination ability. Our 47-mRNA metastasis-related prognostic model and nomogram might be an efficient and valuable tool for overall survival (OS) prediction and provide information for individualized treatment decisions in patients with MB. |
Databáze: | OpenAIRE |
Externí odkaz: |