Self-Supervised Models are Continual Learners
Autor: | Enrico Fini, Victor G. Turrisi Da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, Julien Mairal |
---|---|
Přispěvatelé: | University of Trento [Trento], Apprentissage de modèles à partir de données massives (Thoth), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Vers des robots à l’intelligence sociale au travers de l’apprentissage, de la perception et de la commande (ROBOTLEARN), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Grenoble Alpes (UGA), Fondazione Bruno Kessler [Trento, Italy] (FBK), ANR-19-CE33-0008,ML3RI,Apprentissage de bas-niveau d'ineractions robotiques multi-modales avec plusieurs personnes(2019), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), ANR-18-CE23-0011,AVENUE,Réseau de mémoire visuelle pour l'interprétation de scènes(2018), European Project: 871245,H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT),SPRING(2020) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | CVPR 2022-IEEE/CVF Conference on Computer Vision and Pattern Recognition CVPR 2022-IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 2022, New Orleans, United States. pp.9611-9620, ⟨10.1109/CVPR52688.2022.00940⟩ |
Popis: | International audience; Self-supervised models have been shown to produce comparable or better visual representations than their supervised counterparts when trained offline on unlabeled data at scale. However, their efficacy is catastrophically reduced in a Continual Learning (CL) scenario where data is presented to the model sequentially. In this paper, we show that self-supervised loss functions can be seamlessly converted into distillation mechanisms for CL by adding a predictor network that maps the current state of the representations to their past state. This enables us to devise a framework for Continual self-supervised visual representation Learning that (i) significantly improves the quality of the learned representations, (ii) is compatible with several state-of-the-art self-supervised objectives, and (iii) needs little to no hyperparameter tuning. We demonstrate the effectiveness of our approach empirically by training six popular self-supervised models in various CL settings. |
Databáze: | OpenAIRE |
Externí odkaz: |