Reduced algebraic conditions for plane or axial tensorial symmetries

Autor: Rodrigue Desmorat, Boris Desmorat, Boris Kolev, Marc Olive
Přispěvatelé: Laboratoire de Mécanique et Technologie (LMT), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institut Jean le Rond d'Alembert (DALEMBERT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Zdroj: Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids, SAGE Publications, 2020, 25 (12), pp.2155-2177. ⟨10.1177/1081286520920691⟩
ISSN: 1741-3028
1081-2865
DOI: 10.1177/1081286520920691
Popis: In this article, we formulate necessary and sufficient polynomial equations for the existence of a symmetry plane or an order-two axial symmetry for a totally symmetric tensor of order [Formula: see text]. These conditions are effective and of degree [Formula: see text] (the tensor’s order) in the components of the normal to the plane (or the direction of the axial symmetry). These results are then extended to obtain necessary and sufficient polynomial conditions for the existence of such symmetries for an elasticity tensor, a piezo-electricity tensor or a piezo-magnetism pseudo-tensor.
Databáze: OpenAIRE