Redox Control of the Human Iron-Sulfur Repair Protein MitoNEET Activity via Its Iron-Sulfur Cluster

Autor: Eric Guittet, Jérôme Santolini, Martin Clémancey, Jean-Marc Latour, Ewen Lescop, Cécile Bouton, Geneviève Blondin, Sergio Gonçalves, Cécile Mons, Marie-Pierre Golinelli-Cohen
Přispěvatelé: Institut de Chimie des Substances Naturelles (ICSN), Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles ( ICSN ), Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Chimie et Biologie des Métaux ( LCBM - UMR 5249 ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), 'Avenir' U983 Hopital Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Stress Oxydants et Détoxication (LSOD), Département Biochimie, Biophysique et Biologie Structurale (B3S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Iron-Sulfur Proteins
0301 basic medicine
nuclear magnetic resonance (NMR)
[SDV]Life Sciences [q-bio]
Mossbauer spectroscopy
Regulator
Iron–sulfur cluster
chemistry.chemical_element
[SDV.BC]Life Sciences [q-bio]/Cellular Biology
medicine.disease_cause
Biochemistry
Redox
Fe-S transfer
Mitochondrial Proteins
03 medical and health sciences
chemistry.chemical_compound
Protein stability
medicine
Humans
[SDV.BBM]Life Sciences [q-bio]/Biochemistry
Molecular Biology

Fe-S lability
Molecular Biology
[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry
Molecular Biology

iron-sulfur protein
[ SDV ] Life Sciences [q-bio]
030102 biochemistry & molecular biology
[ SDV.BC ] Life Sciences [q-bio]/Cellular Biology
[ CHIM.COOR ] Chemical Sciences/Coordination chemistry
Cell Biology
Acceptor
Sulfur
Oxidative Stress
Cytosol
Metabolism
030104 developmental biology
chemistry
protein stability
mitoNEET
Raman spectroscopy
Biophysics
Oxidation-Reduction
Oxidative stress
Zdroj: Journal of Biological Chemistry
Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2016, 291 (14), pp.7583-7593. ⟨10.1074/jbc.M115.711218⟩
Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2016, 291 (14), pp.7583-7593. 〈10.1074/jbc.M115.711218.〉
Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2016, 291 (14), pp.7583-7593. ⟨10.1074/jbc.m115.711218⟩
Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2016, pp.7583-93. 〈10.1074/jbc.M115.711218〉
Journal of Biological Chemistry, 2016, 291 (14), pp.7583-7593. ⟨10.1074/jbc.m115.711218⟩
ISSN: 0021-9258
1083-351X
DOI: 10.1074/jbc.M115.711218⟩
Popis: International audience; Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, mNT has been implicated in cytosolic Fe-S repair of a key regulator of cellular iron homeostasis. Here, we aimed to decipher the mechanism by which mNT triggers its Fe-S repair capacity. By using tightly controlled reactions combined with complementary spectroscopic approaches, we have determined the differential roles played by both the redox state of the mNT cluster and dioxygen in cluster transfer and protein stability. We unambiguously demonstrated that only the oxidized state of the mNT cluster triggers cluster transfer to a generic acceptor protein and that dioxygen is neither required for the cluster transfer reaction nor does it affect the transfer rate. In the absence of apo-acceptors, a large fraction of the oxidized holo-mNT form is converted back to reduced holo-mNT under low oxygen tension. Reduced holo-mNT, which holds a [2Fe-2S](+)with a global protein fold similar to that of the oxidized form is, by contrast, resistant in losing its cluster or in transferring it. Our findings thus demonstrate that mNT uses an iron-based redox switch mechanism to regulate the transfer of its cluster. The oxidized state is the "active state," which reacts promptly to initiate Fe-S transfer independently of dioxygen, whereas the reduced state is a "dormant form." Finally, we propose that the redox-sensing function of mNT is a key component of the cellular adaptive response to help stress-sensitive Fe-S proteins recover from oxidative injury.
Databáze: OpenAIRE