High frequency limits for invariant Ruelle densities

Autor: Colin Guillarmou, Tobias Weich, Joachim Hilgert
Přispěvatelé: Université Paris-Saclay, Universität Paderborn (UPB), European Project: 725967,IPFLOW
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Mathematics::Dynamical Systems
Rank (linear algebra)
Scalar (mathematics)
FOS: Physical sciences
Ocean Engineering
Dynamical Systems (math.DS)
01 natural sciences
Measure (mathematics)
Mathematics - Spectral Theory
Mathematics - Analysis of PDEs
0103 physical sciences
Subsequence
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
0101 mathematics
Invariant (mathematics)
Mathematics - Dynamical Systems
[MATH]Mathematics [math]
Spectral Theory (math.SP)
Mathematical Physics
Mathematical physics
Physics
010102 general mathematics
State (functional analysis)
Mathematical Physics (math-ph)
Mathematics::Spectral Theory
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
010307 mathematical physics
Laplace operator
Analysis of PDEs (math.AP)
[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
Zdroj: Annales Henri Lebesgue
Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2021, 4, pp.81-119. ⟨10.5802/ahl.67⟩
ISSN: 2644-9463
DOI: 10.5802/ahl.67⟩
Popis: We establish an equidistribution result for Ruelle resonant states on compact locally symmetric spaces of rank one. More precisely, we prove that among the first band Ruelle resonances there is a density one subsequence such that the respective products of resonant and co-resonant states converge weakly to the Liouville measure. We prove this result by establishing an explicit quantum-classical correspondence between eigenspaces of the scalar Laplacian and the resonant states of the first band of Ruelle resonances which also leads to a new description of Patterson-Sullivan distributions.
Comment: Minor changes, to appear at Annales Henri Lebesgue
Databáze: OpenAIRE