Popis: |
Nitroalkanes are important toxic pollutants for which there is no effective removal method at present. Although genetic engineering bacteria have been developed as a promising bioremediation strategy for years, their actual performance is far lower than expected. In this study, important factors affecting the application of engineered Geobacillus for nitroalkanes degradation were comprehensively optimized. The deep-reconstructed engineered strains significantly raised the expression and activity level of catalytic enzymes, but failed to fully enhance the degradation efficiency. However, further debugging of a variety of key parameters effectively improved the performance of the engineering strains. The increased cell membrane permeability, trace supplementation of vital nutritional factors, synergy of multifunctional enzyme engineered bacteria, switch of oxygen-supply mode, and moderate initial biomass all effectively boosted the degradation efficiency. Finally, a low-cost and highly effective bioreactor test for high-concentration nitroalkanes degradation proved the multi-parameter optimization mode helps to maximize the performance of genetically engineered bacteria. |