Highly Propylene-Selective Mixed-Matrix Membranes by in Situ Metal–Organic Framework Formation Using a Polymer-Modification Strategy
Autor: | Sunghwan Park, Hae-Kwon Jeong, Mohamad Rezi Abdul Hamid |
---|---|
Rok vydání: | 2019 |
Předmět: |
chemistry.chemical_classification
Materials science Fabrication 02 engineering and technology Polymer Permeance 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences Hydrolysis Membrane chemistry Chemical engineering General Materials Science Metal-organic framework Fiber 0210 nano-technology Zeolitic imidazolate framework |
Zdroj: | ACS Applied Materials & Interfaces. 11:25949-25957 |
ISSN: | 1944-8252 1944-8244 |
Popis: | Despite the potential of C3H6/C3H8 separation, there have been no industrial applications of zeolitic-imidazole framework-8 (ZIF-8) mixed-matrix membranes (MMMs) because of the moderate separation performances and several challenging processing issues. Herein, we present a new paradigm of MMM fabrication, named polymer-modification-enabled in situ metal-organic framework formation (PMMOF), enabling in situ formation of ZIF-8 fillers inside the 4,4-(hexafluoroisopropylidene)diphthalic anhydride 2,4,6-trimethyl-1,3-phenylenediamine polymer. PMMOF consists of four steps including hydrolysis of a polymer, ion-exchange, ligand treatment, and imidization. Each step was thoroughly analyzed and important processing parameters were identified, enabling the structural control of MMMs by PMMOF. The binary C3H6/C3H8 separation performance of the MMMs showed much higher separation factors than conventionally prepared MMMs at similar filler loadings, satisfying the commercial C3H6/C3H8 separation performance criteria. PMMOF was successfully applied for other MOFs, demonstrating that the process could be general. Finally, as a proof of concept, asymmetric mixed-matrix hollow fiber membranes (i.d. of 0.45 mm and o.d. of 0.63 mm) with ultrathin selective skin layers were prepared by PMMOF, showing C3H6 permeance of 2.17 GPU and C3H6/C3H8 separation factor of ∼20. |
Databáze: | OpenAIRE |
Externí odkaz: |