Machine Learning for Hilbert Series

Autor: Edward Hirst
Rok vydání: 2022
Předmět:
Zdroj: INSPIRE-HEP
DOI: 10.48550/arxiv.2203.06073
Popis: Hilbert series are a standard tool in algebraic geometry, and more recently are finding many uses in theoretical physics. This summary reviews work applying machine learning to databases of them; and was prepared for the proceedings of the Nankai Symposium on Mathematical Dialogues, 2021.
Comment: Prepared for the proceedings of the Nankai Symposium on Mathematical Dialogues, 2021; 9 pages, 3 figures
Databáze: OpenAIRE