Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT

Autor: Vincent Andrearczyk, Valentin Oreiller, Moamen Abobakr, Azadeh Akhavanallaf, Panagiotis Balermpas, Sarah Boughdad, Leo Capriotti, Joel Castelli, Catherine Cheze Le Rest, Pierre Decazes, Ricardo Correia, Dina El-Habashy, Hesham Elhalawani, Clifton D. Fuller, Mario Jreige, Yomna Khamis, Agustina La Greca, Abdallah Mohamed, Mohamed Naser, John O. Prior, Su Ruan, Stephanie Tanadini-Lang, Olena Tankyevych, Yazdan Salimi, Martin Vallières, Pierre Vera, Dimitris Visvikis, Kareem Wahid, Habib Zaidi, Mathieu Hatt, Adrien Depeursinge
Přispěvatelé: Haute École Spécialisée de Suisse Occidentale Valais-Wallis (HES-SO Valais-Wallis), Centre Hospitalier Universitaire Vaudois [Lausanne] (CHUV), Laboratoire Traitement du Signal et de l'Image (LTSI), Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM), CRLCC Eugène Marquis (CRLCC), Laboratoire de Traitement de l'Information Medicale (LaTIM), Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Brestois Santé Agro Matière (IBSAM), Université de Brest (UBO), Hôpital de la Milétrie, Centre hospitalier universitaire de Poitiers (CHU Poitiers), Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Service de médecine nucléaire [Rouen], CRLCC Haute Normandie-Centre de Lutte Contre le Cancer Henri Becquerel Normandie Rouen (CLCC Henri Becquerel), Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), This work was also partially supported by the Swiss National Science Foundation (SNSF, grant 205320_179069), the Swiss Personalized Health Network (SPHN, via the IMAGINE and QA4IQI projects) and the RCSO IsNET HECKTOR project.
Rok vydání: 2023
Předmět:
Zdroj: Lecture Notes in Computer Science ISBN: 9783031274190
Head and Neck Tumor Segmentation and Outcome Prediction-Third Challenge
Head and Neck Tumor Segmentation and Outcome Prediction-Third Challenge, Sep 2022, Singapore, Singapore. pp.1-30, ⟨10.1007/978-3-031-27420-6_1⟩
DOI: 10.1007/978-3-031-27420-6_1
Popis: International audience; This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H &N), focusing on the oropharynx region. Task 1 is the fully automatic segmentation of H &N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images. Task 2 is the fully automatic prediction of Recurrence-Free Survival (RFS) from the same FDG-PET/CT and clinical data. The data were collected from nine centers for a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient (DSCagg) of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.
Databáze: OpenAIRE