Spiral 3-Dimensional T1-Weighted Turbo Field Echo: Increased Speed for Magnetization-Prepared Gradient Echo Brain Magnetic Resonance Imaging
Autor: | Manoj Mannil, Christoph A. Binkert, Nicole Graf, Luuk van Smoorenburg, Árpád Schwenk, Sabine Sartoretti-Schefer, Elisabeth Sartoretti, Michael Wyss, Thomas Sartoretti |
---|---|
Rok vydání: | 2020 |
Předmět: |
Adult
Male Image quality 030218 nuclear medicine & medical imaging White matter 03 medical and health sciences Magnetization Imaging Three-Dimensional 0302 clinical medicine Nuclear magnetic resonance Neuroimaging medicine Humans Radiology Nuclear Medicine and imaging Image resolution Mathematics medicine.diagnostic_test Magnetic Phenomena Brain Magnetic resonance imaging General Medicine Middle Aged Magnetic Resonance Imaging medicine.anatomical_structure Contrast ratio 030217 neurology & neurosurgery Gradient echo |
Zdroj: | Investigative Radiology. 55:775-784 |
ISSN: | 1536-0210 0020-9996 |
DOI: | 10.1097/rli.0000000000000705 |
Popis: | OBJECTIVES Spiral magnetic resonance imaging acquisition may enable improved image quality and higher scan speeds than Cartesian trajectories. We tested the performance of four 3D T1-weighted (T1w) TFE sequences (magnetization-prepared gradient echo magnetic resonance sequence) with isotropic spatial resolution for brain imaging at 1.5 T in a clinical patient cohort based on qualitative and quantitative image quality metrics. Two prototypical spiral TFE sequences (spiral 1.0 and spiral 0.85) and a Cartesian compressed sensing technology accelerated TFE sequence (CS 2.5; acceleration factor of 2.5) were compared with a conventional (reference standard) Cartesian parallel imaging accelerated TFE sequence (SENSE; acceleration factor of 1.8). MATERIALS AND METHODS The SENSE (5:52 minutes), CS 2.5 (3:17 minutes), and spiral 1.0 (2:16 minutes) sequences all had identical spatial resolutions (1.0 mm). The spiral 0.85 (3:47 minutes) had a higher spatial resolution (0.85 mm). The 4 TFE sequences were acquired in 41 patients (20 with and 21 without contrast media). Three readers rated qualitative image quality (12 categories) and selected their preferred sequence for each patient. Two readers performed quantitative analysis whereby 6 metrics were derived: contrast-to-noise ratio for white and gray matter (CNRWM/GM), contrast ratio for gray matter-CSF (CRGM/CSF), and white matter-CSF (CRWM/CSF); and coefficient of variations for gray matter (CVGM), white matter (CVWM), and CSF (CVCSF). Friedman tests with post hoc Nemenyi tests, exact binomial tests, analysis of variance with post hoc Dunnett tests, and Krippendorff alphas were computed. RESULTS Concerning qualitative analysis, the CS 2.5 sequence significantly outperformed the SENSE in 4/1 (with/without contrast) categories, whereas the spiral 1.0 and spiral 0.85 showed significantly improved scores in 10/9and 7/7 categories, respectively (P's < 0.001-0.039). The spiral 1.0 was most frequently selected as the preferred sequence (reader 1, 10/15 times; reader 2, 9/12 times; reader 3, 11/13times [with/without contrast]). Interreader agreement ranged from substantial to almost perfect (alpha = 0.615-0.997). Concerning quantitative analysis, compared with the SENSE, the CS 2.5 had significantly better scores in 2 categories (CVWM, CVCSF) and worse scores in 2 categories (CRGM/CSF, CRWM/CSF), the spiral 1.0 had significantly improved scores in 4 categories (CNRWM/GM, CRGM/CSF, CRWM/CSF, CVWM), and the spiral 0.85 had significantly better scores in 2 categories (CRGM/CSF, CRWM/CSF). CONCLUSIONS Spiral T1w TFE sequences may deliver high-quality clinical brain imaging, thus matching the performance of conventional parallel imaging accelerated T1w TFEs. Imaging can be performed at scan times as short as 2:16 minutes per sequence (61.4% scan time reduction compared with SENSE). Optionally, spiral imaging enables increased spatial resolution while maintaining the scan time of a Cartesian-based acquisition schema. |
Databáze: | OpenAIRE |
Externí odkaz: |