Untargeted Metabolomic Profiling of Liver in a Chronic Intermittent Hypoxia Mouse Model
Autor: | Yu-Zhen Huang, Jiefeng Huang, Xue-Jun Lin, Zhi-Wei Huang, Li-Da Chen, Zhong-Ping Zhang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
Physiology Pharmacology Carbohydrate metabolism 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Metabolomics UHPLC/Q-TOF MS chronic intermittent hypoxia Physiology (medical) medicine QP1-981 obstructive sleep apnea Original Research Liver injury Intermittent hypoxia Lipid metabolism Glutathione medicine.disease metabolomics Metabolic pathway 030104 developmental biology chemistry Glutathione disulfide 030217 neurology & neurosurgery liver injury |
Zdroj: | Frontiers in Physiology Frontiers in Physiology, Vol 12 (2021) |
ISSN: | 1664-042X |
DOI: | 10.3389/fphys.2021.701035 |
Popis: | Obstructive sleep apnea (OSA) has been demonstrated to be associated with liver injury. Nevertheless, the mechanisms linking the two disorders remain largely unexplored to date. Based on UHPLC/Q-TOF MS platform, the present study aimed to study the hepatic metabolomic profiling in a chronic intermittent hypoxia (CIH) mouse model to identify altered metabolites and related metabolic pathways. C57BL/6 Mice (n = 12 each group) were exposed to intermittent hypoxia or control conditions (room air) for 12 weeks. At the end of the exposure, liver enzymes and histological changes were assessed. Untargeted metabolomics approach by UHPLC/Q-TOF MS and orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied to screen altered metabolites in mice liver. Bioinformatics analyses were applied to identify the related metabolic pathways. CIH treatment caused a remarkable liver injury in mice. A total of 27 differential metabolites in negative ion mode and 44 in positive ion mode were identified between the two groups. These metabolites were correlated to multiple biological and metabolic processes, including various amino acid metabolism, membrane transport, lipid metabolism, carbohydrate metabolism, nucleotide metabolism, ferroptosis, etc. three differential metabolites including glutathione, glutathione disulfide, arachidonic acid (peroxide free) were identified in the ferroptosis pathway. CIH was associated with a significant metabolic profiling change in mice liver. The metabolites in amino acid metabolism, membrane transport, lipid metabolism, carbohydrate metabolism, nucleotide metabolism, and ferroptosis played an important role in CIH-induced liver injury. These findings contribute to a better understanding of the mechanisms linking OSA and liver injury and help identify potential therapeutic targets. |
Databáze: | OpenAIRE |
Externí odkaz: |