Kerr coefficients of plasma resonances in Josephson junction chains

Autor: Thomas Weißl, Cécile Naud, Frank W. J. Hekking, Etienne Dumur, Wiebke Guichard, Iulian Matei, B. Küng, Olivier Buisson, A. K. Feofanov
Přispěvatelé: Circuits électroniques quantiques Alpes (QuantECA), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Centre d'économie de la Sorbonne (CES), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et modélisation des milieux condensés (LPM2C), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), European Project: 306731,EC:FP7:ERC,ERC-2012-StG_20111012,FREQUJOC(2013), Circuits électroniques quantiques Alpes (NEEL - QuantECA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Předmět:
Zdroj: Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2015, 92 (10), pp.104508. ⟨10.1103/PhysRevB.92.104508⟩
Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2015, 92 (10), pp.104508. ⟨10.1103/PhysRevB.92.104508⟩
ISSN: 1098-0121
1550-235X
DOI: 10.1103/PhysRevB.92.104508⟩
Popis: We present an experimental and theoretical analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. We calculate the Kerr coefficients by deriving and diagonalizing the Hamiltonian of a linear circuit model for the chain and then adding the Josephson non-linearity as a perturbation. The calculated Kerr-coefficients are compared with the measurement data of a chain of 200 junctions. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power on a low signal level, we are able to measure this shift. The photon number is calibrated using the self-Kerr shift calculated from the sample parameters. We then compare the measured cross-Kerr shift with the theoretical prediction, using the calibrated photon number.
10 pages, 9 figures
Databáze: OpenAIRE