Buckling of an Elastic Ridge: Competition between Wrinkles and Creases

Autor: Arnaud Lazarus, Claire Lestringant, Basile Audoly, Corrado Maurini
Přispěvatelé: Institut Jean le Rond d'Alembert (DALEMBERT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Mécanique et Ingénierie des Solides Et des Structures (IJLRDA-MISES), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-13-JS09-0009,SLENDER,Structures élancées : stabilité, optimisation, contrôle(2013), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Rok vydání: 2017
Předmět:
Zdroj: Physical Review Letters
Physical Review Letters, 2017, 118, pp.165501 ⟨10.1103/PhysRevLett.118.165501⟩
Physical Review Letters, American Physical Society, 2017, 118, pp.165501 ⟨10.1103/PhysRevLett.118.165501⟩
ISSN: 1079-7114
0031-9007
DOI: 10.1103/physrevlett.118.165501
Popis: International audience; We investigate the elastic buckling of a triangular prism made of a soft elastomer. A face of the prism is bonded to a stiff slab that imposes an average axial compression. We observe two possible buckling modes which are localized along the free ridge. For ridge angles $\phi$ below a critical value $\phi^\star\approx 90^\circ$ experiments reveal an extended sinusoidal mode, while for $\phi$ above $\phi^\star$ we observe a series of creases progressively invading the lateral faces starting from the ridge. A numerical linear stability analysis is set up using the finite-element method and correctly predicts the sinusoidal mode for $\phi \leq \phi^\star$, as well as the associated critical strain $\epsilon_{\mathrm{c}}(\phi)$. The experimental transition at $\phi^\star$ is found to occur when this critical strain $\epsilon_{\mathrm{c}}(\phi)$ attains the value $\epsilon_{\mathrm{c}}(\phi^\star) = 0.44$ corresponding to the threshold of the sub-critical surface creasing instability. Previous analyses have focused on elastic crease patterns appearing on planar surfaces, where the role of scale-invariance has been emphasized; our analysis of the elastic ridge provides a different perspective, and reveals that scale-invariance is not a sufficient condition for localization.
Databáze: OpenAIRE