Diurnal and Seasonal Mapping of Water Deficit Index and Evapotranspiration by an Unmanned Aerial System: A Case Study for Winter Wheat in Denmark

Autor: Kirsten Kørup, Vita Antoniuk, Rene Larsen, Inge Sandholt, Xiying Zhang, Kiril Manevski, Mathias Neumann Andersen
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Remote Sensing
Volume 13
Issue 15
Pages: 2998
Antoniuk, V, Manevski, K, Sørensen, K K, Larsen, R, Sandholdt, I, Zhang, X & Andersen, M N 2021, ' Diurnal and Seasonal Mapping of Water Deficit Index and Evapotranspiration by an Unmanned Aerial System : A Case Study for Winter Wheat in Denmark ', Remote Sensing, vol. 13, no. 15, 2998 . https://doi.org/10.3390/rs13152998
Remote Sensing, Vol 13, Iss 2998, p 2998 (2021)
Antoniuk, V, Manevski, K, Kørup, K, Larsen, R, Sandholt, I, Zhang, X & Andersen, M N 2021, ' Diurnal and seasonal mapping of water deficit index and evapotranspiration by an unmanned aerial system : A case study for winter wheat in denmark ', Remote Sensing, vol. 13, no. 15, 2998 . https://doi.org/10.3390/rs13152998
ISSN: 2072-4292
DOI: 10.3390/rs13152998
Popis: Precision irrigation is a promising method to mitigate the impacts of drought stress on crop production with the optimal use of water resources. However, the reliable assessment of plant water status has not been adequately demonstrated, and unmanned aerial systems (UAS) offer great potential for spatiotemporal improvements. This study utilized UAS equipped with multispectral and thermal sensors to detect and quantify drought stress in winter wheat (Triticum aestivum L.) using the Water Deficit Index (WDI). Biennial field experiments were conducted on coarse sand soil in Denmark and analyses were performed at both diurnal and seasonal timescales. The WDI was significantly correlated with leaf stomatal conductance (R2 = 0.61–0.73), and the correlation was weaker with leaf water potential (R2 = 0.39–0.56) and topsoil water status (the highest R2 of 0.68). A semi-physical model depicting the relationship between WDI and fraction of transpirable soil water (FTSW) in the root zone was derived with R2 = 0.74. Moreover, WDI estimates were improved using an energy balance model with an iterative scheme to estimate the net radiation and land surface temperature, as well as the dual crop coefficient. The diurnal variation in WDI revealed a pattern of the ratio of actual to potential evapotranspiration, being higher in the morning, decreasing at noon hours and ‘recovering’ in the afternoon. Future work should investigate the temporal upscaling of evapotranspiration, which may be used to develop methods for site-specific irrigation recommendations.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje