Localized adaptive radiation condition for coupling boundary with finite element methods applied to wave propagation problems
Autor: | Nicolas Zerbib, Abderrahmane Bendali, Yassine Boubendir |
---|---|
Přispěvatelé: | Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), CERFACS, Department of Mathematical Sciences [Newark, NJ] (NJIT), Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers)-Rutgers University System (Rutgers), ESIGroup, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Applied Mathematics
General Mathematics Mathematical analysis Boundary (topology) Domain decomposition methods Mixed finite element method Boundary knot method Finite element method domain decomposition methods boundary element method Computational Mathematics Method of fundamental solutions finite element methods Helmholtz equation Boundary element method [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] Mathematics Extended finite element method |
Zdroj: | IMA Journal of Numerical Analysis IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2014, 34 (3), pp.1240-1265. ⟨10.1093/imanum/drt038⟩ IMA Journal of Numerical Analysis, 2014, 34 (3), pp.1240-1265. ⟨10.1093/imanum/drt038⟩ |
ISSN: | 0272-4979 1464-3642 |
Popis: | first published online October 3, 2013 doi:10.1093/imanum/drt038; International audience; The wave propagation problems addressed in this paper involve a relatively large and impenetrable surface on which is posed a comparatively small penetrable heterogeneous material. Typically the numerical solution of such kinds of problems is solved by coupling boundary and finite element methods. However, a straightforward application of this technique gives rise to some difficulties which mainly are related to the solution of a large linear system whose matrix consists of sparse and dense blocks. To face such difficulties, the adaptive radiation condition technique is modified by localizing the truncation interface only around the heterogeneous material. Stability and error estimates are established for the underlying approximation scheme. Some alternative methods are recalled or designed making it possible to compare the numerical efficiency of the proposed approach. |
Databáze: | OpenAIRE |
Externí odkaz: |