Global bifurcation for a class of nonlinear ODEs
Autor: | Renato G. Bettiol, Paolo Piccione |
---|---|
Rok vydání: | 2022 |
Předmět: |
Mathematics - Differential Geometry
Differential Geometry (math.DG) Computational Theory and Mathematics Mathematics - Classical Analysis and ODEs General Mathematics Classical Analysis and ODEs (math.CA) FOS: Mathematics 34C23 53C21 58J55 Mathematics::Differential Geometry Statistics Probability and Uncertainty TEORIA DA BIFURCAÇÃO |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 2316-9028 1982-6907 |
DOI: | 10.1007/s40863-022-00290-3 |
Popis: | We briefly survey global bifurcation techniques, and illustrate their use by finding multiple positive periodic solutions to a class of second order quasilinear ODEs related to the Yamabe problem. As an application, we give a bifurcation-theoretic proof of a classical nonuniqueness result for conformal metrics with constant scalar curvature, that was independently discovered by O. Kobayashi and R. Schoen in the 1980s. Comment: LaTeX2e, 19 pages, 2 figures, final (revised) version. To appear in S\~ao Paulo J. Math. Sci |
Databáze: | OpenAIRE |
Externí odkaz: |