Ideals with Smital properties
Autor: | Marcin Michalski, Robert Rałowski, Szymon Żeberski |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Archive for Mathematical Logic. 62:831-842 |
ISSN: | 1432-0665 0933-5846 |
Popis: | A $$\sigma $$ σ -ideal $$\mathcal {I}$$ I on a Polish group $$(X,+)$$ ( X , + ) has the Smital Property if for every dense set D and a Borel $$\mathcal {I}$$ I -positive set B the algebraic sum $$D+B$$ D + B is a complement of a set from $$\mathcal {I}$$ I . We consider several variants of this property and study their connections with the countable chain condition, maximality and how well they are preserved via Fubini products. In particular we show that there are $$\mathfrak {c}$$ c many maximal invariant $$\sigma $$ σ -ideals with Borel bases on the Cantor space $$2^\omega $$ 2 ω . |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |