Non-resonant viscous theory for the stability of a fluid-filled gyroscope
Autor: | Jean-Pierre Lambelin, François Nadal, Arthur Sarthou, Romain Lagrange |
---|---|
Přispěvatelé: | Centre d'études scientifiques et techniques d'Aquitaine (CESTA), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'études de DYNamique (DYN), Service d'Etudes Mécaniques et Thermiques (SEMT), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département de Modélisation des Systèmes et Structures (DM2S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay |
Jazyk: | angličtina |
Rok vydání: | 2009 |
Předmět: |
media_common.quotation_subject
Inertia 01 natural sciences 010305 fluids & plasmas law.invention Physics::Fluid Dynamics symbols.namesake Inviscid flow law 0103 physical sciences [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] 010306 general physics media_common Physics Mechanical Engineering Mathematical analysis Reynolds number Gyroscope Condensed Matter Physics Numerical integration Classical mechanics Flow (mathematics) Mechanics of Materials Precession symbols Dimensionless quantity |
Zdroj: | Journal of Fluid Mechanics Journal of Fluid Mechanics, Cambridge University Press (CUP), 2009, 639, pp.167-194. ⟨10.1017/S0022112009990978⟩ Journal of Fluid Mechanics, 2009, 639, pp.167-194. ⟨10.1017/S0022112009990978⟩ |
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112009990978⟩ |
Popis: | In the case of a gyroscope including a cylindrical fluid-filled cavity, the classic Poinsot's coning motion can become unstable. For certain values of the solid inertia ratio, the coning angle opens under the effect of the hydrodynamic torque. The coupled dynamics of such a non-solid system is ruled by four dimensionless numbers: the small viscous parameter ε = Re−1/2 (where Re denotes the Reynolds number), the fluid–solid inertia ratio κ which quantifies the proportion of liquid relative to the total mass of the gyroscope, the solid inertia ratio σ and the aspect ratio h of the cylindrical cavity. The calculation of the hydrodynamic torque on the solid part of the gyroscope requires the preliminary evaluation of the possibly resonant flow inside the cavity. The hydrodynamic scaling used to derive such a flow essentially depends on the relative values of κ and ε. For small values of the ratio /ε (compared to 1), Gans derived an expression of the growth rate of the coning angle. The principles of Gans' approach (Gans, AIAA J., vol. 22, 1984, pp. 1465–1471) are briefly recalled but the details of the whole calculation are not given. At the opposite limit, that is for large values of /ε, the dominating flow is given by a linear inviscid theory. In order to take account of viscous effects, we propose a direct method involving an exhaustive calculation of the flow at order ε. We show that the deviations from Stewartson's inviscid theory (Stewartson, J. Fluid Mech., vol. 5, 1958, p. 577) do not originate from the viscous shear at the walls but rather from the bulk pressure at order ε related to the Ekman suction. Physical contents of Wedemeyer's heuristic theory (Wedemeyer, BRL Report N 1325, 1966) are analysed in the view of our analytical results. The latter are tested numerically in a large range of parameters. Complete Navier–Stokes (NS) equations are solved in the cavity. The hydrodynamic torque obtained by numerical integration of the stress is used as a forcing term in the coupled fluid–solid equations. Numerical results and analytical predictions show a fairly good quantitative agreement. |
Databáze: | OpenAIRE |
Externí odkaz: |