Effects of environmental factors on MSP21–25 aggregation indicate the roles of hydrophobic and electrostatic interactions in the aggregation process
Autor: | Yuanqiu Dong, Xuecheng Zhang, Jigang Yu, Xiaoming Tu |
---|---|
Rok vydání: | 2013 |
Předmět: |
Amyloid
Static Electricity Protozoan Proteins Biophysics Trimethylamine Antigens Protozoan Protein aggregation Anilino Naphthalenesulfonates Hydrophobic effect Methylamines chemistry.chemical_compound Static electricity Urea Benzothiazoles Sodium dodecyl sulfate Merozoite surface protein Sodium Dodecyl Sulfate General Medicine Hydrogen-Ion Concentration Peptide Fragments Thiazoles chemistry Biochemistry Thioflavin Protein Multimerization Hydrophobic and Hydrophilic Interactions |
Zdroj: | European Biophysics Journal. 43:1-9 |
ISSN: | 1432-1017 0175-7571 |
DOI: | 10.1007/s00249-013-0934-9 |
Popis: | Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the merozoite surface of Plasmodium falciparum, is recognized to be important for the parasite's invasion into the host cell and is thus a promising malaria vaccine candidate. However, mediated mainly by its conserved N-terminal 25 residues (MSP21-25), MSP2 readily forms amyloid fibril-like aggregates under physiological conditions in vitro, which impairs its potential as a vaccine component. In addition, there is evidence that MSP2 exists in aggregated forms on the merozoite surface in vivo. To elucidate the aggregation mechanism of MSP21-25 and thereby understand the behavior of MSP2 in vivo and find ways to avoid the aggregation of relevant vaccine in vitro, we investigated the effects of agitation, pH, salts, 1-anilinonaphthalene-8-sulfonic acid (ANS), trimethylamine N-oxide dihydrate (TMAO), urea, and sub-micellar sodium dodecyl sulfate (SDS) on the aggregation kinetics of MSP21-25 using thioflavin T (ThT) fluorescence. The results showed that MSP21-25 aggregation was accelerated by agitation, while repressed by acidic pHs. The salts promoted the aggregation in an anion nature-dependent pattern. Hydrophobic surface-binding agent ANS and detergent urea repressed MSP21-25 aggregation, in contrast to hydrophobic interaction strengthener TMAO, which enhanced the aggregation. Notably, sub-micellar SDS, contrary to its micellar form, promoted MSP21-25 aggregation significantly. Our data indicated that hydrophobic interactions are the predominant driving force of the nucleation of MSP21-25 aggregation, while the elongation is controlled mainly by electrostatic interactions. A kinetic model of MSP21-25 aggregation and its implication were also discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |