The point decomposition problem over hyperelliptic curves

Autor: Alexandre Wallet, Jean-Charles Faugère
Přispěvatelé: Polynomial Systems (PolSys), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Arithmetic and Computing (ARIC), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Rok vydání: 2017
Předmět:
Zdroj: Designs, Codes and Cryptography
Designs, Codes and Cryptography, 2018, 86, pp.2279-2314. ⟨10.1007/s10623-017-0449-y⟩
Designs, Codes and Cryptography, Springer Verlag, In press, ⟨10.1007/s10623-017-0449-y⟩
ISSN: 1573-7586
0925-1022
DOI: 10.1007/s10623-017-0449-y
Popis: International audience; Computing discrete logarithms is generically a difficult problem. For divisor class groups of curves defined over extension fields, a variant of the Index-Calculus called Decomposition attack is used, and it can be faster than generic approaches. In this situation, collecting the relations is done by solving multiple instances of the Point m-Decomposition Problem (PDP$_m$). An instance of this problem can be modelled as a zero-dimensional polynomial system. Solving is done with Gröbner bases algorithms, where the number of solutions of the system is a good indicator for the time complexity of the solving process. For systems arising from a PDP$_m$ context, this number grows exponentially fast with the extension degree. To achieve an efficient harvesting, this number must be reduced as much as as possible. Extending the elliptic case, we introduce a notion of Summation Ideals to describe PDP m instances over higher genus curves, and compare to Nagao's general approach to PDP$_m$ solving. In even characteristic we obtain reductions of the number of solutions for both approaches, depending on the curve's equation. In the best cases, for a hyperelliptic curve of genus $g$, we can divide the number of solutions by $2^{(n−1)(g+1)}$. For instance, for a type II genus 2 curve defined over $\mathbb{F}_{2^{93}}$ whose divisor class group has cardinality a near-prime 184 bits integer, the number of solutions is reduced from 4096 to 64. This is enough to build the matrix of relations in around 7 days with 8000 cores using a dedicated implementation.
Databáze: OpenAIRE