Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields

Autor: Mau, Adrien, Friedl, Karoline, Leterrier, Christophe, Bourg, Nicolas, Lévêque-Fort, Sandrine
Přispěvatelé: Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Abbelight, Institut de neurophysiopathologie (INP), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
0301 basic medicine
Fluorescence-lifetime imaging microscopy
Materials science
Light
Optical sectioning
Science
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology
General Physics and Astronomy
Total internal reflection microscopy
Field of view
Microtubules
01 natural sciences
Article
General Biochemistry
Genetics and Molecular Biology

010309 optics
03 medical and health sciences
Optics
Chlorocebus aethiops
0103 physical sciences
Microscopy
Animals
Super-resolution microscopy
Aster (genus)
Lighting
[PHYS]Physics [physics]
Multidisciplinary
Total internal reflection fluorescence microscope
biology
business.industry
Lasers
Optical Imaging
Reproducibility of Results
General Chemistry
biology.organism_classification
Single Molecule Imaging
030104 developmental biology
Wide-field fluorescence microscopy
Microscopy
Fluorescence

COS Cells
business
Algorithms
Zdroj: Nature Communications
Nature Communications, 2021, 12 (1), ⟨10.1038/s41467-021-23405-4⟩
Nature Communications, Nature Publishing Group, 2021, 12 (1), ⟨10.1038/s41467-021-23405-4⟩
Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
ISSN: 2041-1723
DOI: 10.1038/s41467-021-23405-4⟩
Popis: Non-uniform illumination limits quantitative analyses of fluorescence imaging techniques. In particular, single molecule localization microscopy (SMLM) relies on high irradiances, but conventional Gaussian-shaped laser illumination restricts the usable field of view to around 40 µm × 40 µm. We present Adaptable Scanning for Tunable Excitation Regions (ASTER), a versatile illumination technique that generates uniform and adaptable illumination. ASTER is also highly compatible with optical sectioning techniques such as total internal reflection fluorescence (TIRF). For SMLM, ASTER delivers homogeneous blinking kinetics at reasonable laser power over fields-of-view up to 200 µm × 200 µm. We demonstrate that ASTER improves clustering analysis and nanoscopic size measurements by imaging nanorulers, microtubules and clathrin-coated pits in COS-7 cells, and β2-spectrin in neurons. ASTER’s sharp and quantitative illumination paves the way for high-throughput quantification of biological structures and processes in classical and super-resolution fluorescence microscopies.
Uniform illumination is a prerequisite for quantitative analyses in both classical fluorescence microscopy and single molecule localisation microscopy. Here, the authors introduce ASTER, an illumination technique that generates uniform illumination over large and adaptable fields of view, compatible with epifluorescence, HiLo and TIRF illumination schemes.
Databáze: OpenAIRE