Pentacyclic Nitrofurans with In Vivo Efficacy and Activity against Nonreplicating Mycobacterium tuberculosis
Autor: | Anne J. Lenaerts, Michael S. Scherman, Richard E. Lee, Julian G. Hurdle, Michael R. McNeil, Bernd Meibohm, Robin B. Lee, David F. Bruhn, Lisa K. Woolhiser, Dora B. Madhura, Aman P. Singh, Marcus M. Maddox, Rakesh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Bacterial Diseases
Drugs and Devices Tuberculosis Mouse medicine.drug_class Nitrofurans Antitubercular Agents lcsh:Medicine Pharmacology Microbiology Heterocyclic Compounds 4 or More Rings Mycobacterium tuberculosis chemistry.chemical_compound Model Organisms In vivo Microbial Control Chemical Biology medicine Pharmacokinetics lcsh:Science Nitrofuran Biology Cross-resistance Multidisciplinary Nitroimidazole biology Isoniazid lcsh:R Nontuberculous Mycobacteria Animal Models biology.organism_classification Antimicrobial medicine.disease 3. Good health Chemistry Infectious Diseases chemistry Medical Microbiology Medicine lcsh:Q Medicinal Chemistry medicine.drug Research Article |
Zdroj: | PLoS ONE PLoS ONE, Vol 9, Iss 2, p e87909 (2014) |
ISSN: | 1932-6203 |
Popis: | The reductively activated nitroaromatic class of antimicrobials, which include nitroimidazole and the more metabolically labile nitrofuran antitubercular agents, have demonstrated some potential for development as therapeutics against dormant TB bacilli. In previous studies, the pharmacokinetic properties of nitrofuranyl isoxazolines were improved by incorporation of the outer ring elements of the antitubercular nitroimidazole OPC-67683. This successfully increased stability of the resulting pentacyclic nitrofuran lead compound Lee1106 (referred to herein as 9a). In the current study, we report the synthesis and antimicrobial properties of 9a and panel of 9a analogs, which were developed to increase oral bioavailability. These hybrid nitrofurans remained potent inhibitors of Mycobacterium tuberculosis with favorable selectivity indices (>150) and a narrow spectrum of activity. In vivo, the pentacyclic nitrofuran compounds showed long half-lives and high volumes of distribution. Based on pharmacokinetic testing and lack of toxicity in vivo, 9a remained the series lead. 9a exerted a lengthy post antibiotic effect and was highly active against nonreplicating M. tuberculosis grown under hypoxia. 9a showed a low potential for cross resistance to current antitubercular agents, and a mechanism of activation distinct from pre-clinical tuberculosis candidates PA-824 and OPC-67683. Together these studies show that 9a is a nanomolar inhibitor of actively growing as well as nonreplicating M. tuberculosis. |
Databáze: | OpenAIRE |
Externí odkaz: |