Asymptotic behavior for a one-dimensional nonlocal diffusion equation in exterior domains
Autor: | Noemi Wolanski, Fernando Quirós, Manuel Elgueta, Carmen Cortázar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Diffusion equation
Matemáticas Thermal diffusivity 01 natural sciences Dirichlet distribution Matemática Pura purl.org/becyt/ford/1 [https] symbols.namesake Mathematics - Analysis of PDEs Difusión no local Quantum mechanics FOS: Mathematics 35R09 45K05 45M05 0101 mathematics Mathematics Complement (set theory) Applied Mathematics 010102 general mathematics Mathematical analysis Zero (complex analysis) purl.org/becyt/ford/1.1 [https] 010101 applied mathematics Computational Mathematics Dipole Domain (ring theory) symbols Heat equation Comportamiento asintótico Analysis CIENCIAS NATURALES Y EXACTAS Analysis of PDEs (math.AP) |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
DOI: | 10.1137/151006287 |
Popis: | We study the long time behavior of solutions to the nonlocal diffusion equation $\partial_t u=J*u-u$ in an exterior one-dimensional domain, with zero Dirichlet data on the complement. In the far field scale, $\xi_1\le|x|t^{-1/2}\le\xi_2$, $\xi_1,\xi_2>0$, this behavior is given by a multiple of the dipole solution for the local heat equation with a diffusivity determined by $J$. However, the proportionality constant is not the same on $\mathbb{R}_+$ and $\mathbb{R}_-$: it is given by the asymptotic first momentum of the solution on the corresponding half line, which can be computed in terms of the initial data. In the near field scale, $|x|\le t^{1/2}h(t)$, $\lim_{t\to\infty}h(t)=0$, the solution scaled by a factor $t^{3/2}/(|x|+1)$ converges to a stationary solution of the problem that behaves as $b^\pm{x}$ as $x\to\pm\infty$. The constants $b^\pm$ are obtained through a matching procedure with the far field limit. In the very far field, $|x|{\ge}t^{1/2} g(t)$, $g(t)\to\infty$, the solution has order $o(t^{-1})$. Comment: 25 pages |
Databáze: | OpenAIRE |
Externí odkaz: |