Subsystem entropies of shifts of finite type and sofic shifts on countable amenable groups
Autor: | ROBERT BLAND, KEVIN MCGOFF, RONNIE PAVLOV |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | In this work we study the entropies of subsystems of shifts of finite type (SFTs) and sofic shifts on countable amenable groups. We prove that for any countable amenable group $G$, if $X$ is a $G$-SFT with positive topological entropy $h(X) > 0$, then the entropies of the SFT subsystems of $X$ are dense in the interval $[0, h(X)]$. In fact, we prove a "relative" version of the same result: if $X$ is a $G$-SFT and $Y \subset X$ is a subshift such that $h(Y) < h(X)$, then the entropies of the SFTs $Z$ for which $Y \subset Z \subset X$ are dense in $[h(Y), h(X)]$. We also establish analogous results for sofic $G$-shifts. 32 pages, 4 figures |
Databáze: | OpenAIRE |
Externí odkaz: |