Instability for harmonic foliations on compact homogeneous spaces
Autor: | Tomonori Noda, Kei Ichikawa |
---|---|
Rok vydání: | 2009 |
Předmět: |
Euclidean space
Isotropy Mathematical analysis Instability Harmonic (mathematics) Symmetric space Harmonic foliation Relatively compact subspace Computational Theory and Mathematics Euclidean geometry Foliation (geology) Mathematics::Differential Geometry Locally compact space Geometry and Topology Stability Mathematics::Symplectic Geometry Analysis Mathematics |
Zdroj: | Differential Geometry and its Applications. 27(1):119-123 |
ISSN: | 0926-2245 |
DOI: | 10.1016/j.difgeo.2008.06.012 |
Popis: | In this paper we discuss the instability of harmonic foliations on compact submanifolds immersed in Euclidean spaces and compact homogeneous spaces. We obtain a sufficient condition for a harmonic foliation to be unstable on compact submanifolds in a Euclidean space and on compact isotropy irreducible homogeneous spaces. We also classify compact symmetric spaces which have no non-trivial stable harmonic foliation. |
Databáze: | OpenAIRE |
Externí odkaz: |