Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece
Autor: | Kyriaki Kelektsoglou |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Pilot phase
020209 energy Carbonation mineral carbonation lcsh:TJ807-830 Geography Planning and Development lcsh:Renewable energy sources 02 engineering and technology Management Monitoring Policy and Law Carbon sequestration CO2 sequestration 010502 geochemistry & geophysics 01 natural sciences chemistry.chemical_compound CarbFix 0202 electrical engineering electronic engineering information engineering Carbon capture and storage lcsh:Environmental sciences 0105 earth and related environmental sciences lcsh:GE1-350 Mineral Waste management Renewable Energy Sustainability and the Environment lcsh:Environmental effects of industries and plants carbon capture and storage lcsh:TD194-195 chemistry Greek power plants Carbon dioxide Carbonate Environmental science |
Zdroj: | Sustainability Volume 10 Issue 12 Sustainability, Vol 10, Iss 12, p 4400 (2018) |
ISSN: | 2071-1050 |
DOI: | 10.3390/su10124400 |
Popis: | As the demand for the reduction of global emissions of carbon dioxide (CO2) increases, the need for anthropogenic CO2 emission reductions becomes urgent. One promising technology to this end, is carbon capture and storage (CCS). This paper aims to provide the current state-of-the-art of CO2 capure, transport, and storage and focuses on mineral carbonation, a novel method for safe and permanent CO2 sequestration which is based on the reaction of CO2 with calcium or magnesium oxides or hydroxides to form stable carbonate materials. Current commercial scale projects of CCS around Europe are outlined, demonstrating that only three of them are in operation, and twenty-one of them are in pilot phase, including the only one case of mineral carbonation in Europe the case of CarbFix in Iceland. This paper considers the necessity of CO2 sequestration in Greece as emissions of about 64.6 million tons of CO2 annually, originate from the lignite fired power plants. A real case study concerning the mineral storage of CO2 in Greece has been conducted, demonstrating the applicability of several geological forms around Greece for mineral carbonation. The study indicates that Mount Pindos ophiolite and Vourinos ophiolite complex could be a promising means of CO2 sequestration with mineral carbonation. Further studies are needed in order to confirm this aspect. |
Databáze: | OpenAIRE |
Externí odkaz: |