Numerical solution of a class of third order tensor linear equations
Autor: | Valeria Simoncini |
---|---|
Přispěvatelé: | Simoncini V. |
Rok vydání: | 2020 |
Předmět: |
Class (set theory)
General Mathematics MathematicsofComputing_NUMERICALANALYSIS Tensors 010103 numerical & computational mathematics Linear algebraic equation 01 natural sciences 010101 applied mathematics symbols.namesake Third order Schur decomposition Tensor (intrinsic definition) Kronecker delta ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION symbols Applied mathematics Symmetric matrix 0101 mathematics Coefficient matrix Linear equation Mathematics |
Zdroj: | Bollettino dell'Unione Matematica Italiana. 13:429-439 |
ISSN: | 2198-2759 1972-6724 |
DOI: | 10.1007/s40574-020-00247-4 |
Popis: | We propose a new dense method for determining the numerical solution to a class of third order tensor linear equations. The approach does not require the use of the coefficient matrix in Kronecker form, thus it allows the treatment of structured very large problems. A particular version of the method for symmetric matrices is also discussed. Numerical experiments illustrate the properties of the proposed algorithm. |
Databáze: | OpenAIRE |
Externí odkaz: |