Syzygies in Hilbert schemes of complete intersections

Autor: Giulio Caviglia, Alessio Sammartano
Rok vydání: 2023
Předmět:
Zdroj: Journal of Algebra. 619:538-557
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2022.12.015
Popis: Let $ e_1, ..., e_c $ be positive integers and let $ Y \subseteq \mathbb{P}^n$ be the monomial complete intersection defined by the vanishing of $x_1^{e_1}, ..., x_c^{e_c}$. In this paper we study sharp upper bounds on the number of equations and syzygies of subschemes parametrized by the Hilbert scheme of points $Hilb^d(Y)$, and discuss applications to the Hilbert scheme of points $Hilb^d(X)$ of arbitrary complete intersections $X \subseteq \mathbb{P}^n$.
Final version
Databáze: OpenAIRE