Syzygies in Hilbert schemes of complete intersections
Autor: | Giulio Caviglia, Alessio Sammartano |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of Algebra. 619:538-557 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2022.12.015 |
Popis: | Let $ e_1, ..., e_c $ be positive integers and let $ Y \subseteq \mathbb{P}^n$ be the monomial complete intersection defined by the vanishing of $x_1^{e_1}, ..., x_c^{e_c}$. In this paper we study sharp upper bounds on the number of equations and syzygies of subschemes parametrized by the Hilbert scheme of points $Hilb^d(Y)$, and discuss applications to the Hilbert scheme of points $Hilb^d(X)$ of arbitrary complete intersections $X \subseteq \mathbb{P}^n$. Final version |
Databáze: | OpenAIRE |
Externí odkaz: |