A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

Autor: Shunri Oda, Seigo Tarucha, Kohei M. Itoh, Yusuke Hoshi, Giles Allison, Kenta Takeda, Jun Yoneda, Tetsuo Kodera, Noritaka Usami, Takumu Honda, M. R. Delbecq, Tomohiro Otsuka, Takashi Nakajima
Rok vydání: 2017
Předmět:
Zdroj: Nature Nanotechnology. 13:102-106
ISSN: 1748-3395
1748-3387
DOI: 10.1038/s41565-017-0014-x
Popis: Recent advances towards spin-based quantum computation have been primarily fuelled by elaborate isolation from noise sources, such as surrounding nuclear spins and spin-electric susceptibility, to extend spin coherence. In the meanwhile, addressable single-spin and spin-spin manipulations in multiple-qubit systems will necessitate sizable spin-electric coupling. Given background charge fluctuation in nanostructures, however, its compatibility with enhanced coherence should be crucially questioned. Here we realise a single-electron spin qubit with isotopically-enriched phase coherence time (20 microseconds) and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge (instead of conventional magnetic) noise featured by a 1/f spectrum over seven decades of frequency. The qubit nevertheless exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average. Our work strongly suggests that designing artificial spin-electric coupling with account taken of charge noise is a promising route to large-scale spin-qubit systems having fault-tolerant controllability.
Databáze: OpenAIRE