Genetic diversity structure of western-type carrots
Autor: | Dariusz Grzebelus, Katarzyna Stelmach, Charlotte J. Allender, Alicja Macko-Podgórni |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
0301 basic medicine Germplasm DAPC SNP Market classes Plant Science Biology Selective breeding Population structure Polymorphism Single Nucleotide 01 natural sciences Genetic diversity Root shape Crop 03 medical and health sciences Genetic variation Cultivar SB Research QK fungi Botany Genetic Variation food and beverages Daucus carota Horticulture Phenotype 030104 developmental biology QK1-989 Gene pool DcSto Inbreeding 010606 plant biology & botany |
Zdroj: | BMC Plant Biology, Vol 21, Iss 1, Pp 1-13 (2021) BMC Plant Biology |
ISSN: | 1471-2229 |
Popis: | BackgroundCarrot is a crop with a wide range of phenotypic and molecular diversity. Within cultivated carrots, the western gene pool comprises types characterized by different storage root morphology. First western carrot cultivars originated from broad-based populations. It was followed by intercrosses among plants representing early open-pollinated cultivars, combined with mass phenotypic selection for traits of interest. Selective breeding improved root uniformity and led to the development of a range of cultivars differing in root shape and size. Based on the root shape and the market use of cultivars, a dozen of market types have been distinguished. Despite their apparent phenotypic variability, several studies have suggested that western cultivated carrot germplasm was genetically non-structured.ResultsNinety-threeDcS-ILP markers and 2354 SNP markers were used to evaluate the structure of genetic diversity in the collection of 78 western type open-pollinated carrot cultivars, each represented by five plants. The mean percentage of polymorphic loci segregating within a cultivar varied from 31.18 to 89.25% forDcS-ILP markers and from 45.11 to 91.29% for SNP markers, revealing high levels of intra-cultivar heterogeneity, in contrast to its apparent phenotypic stability. Average inbreeding coefficient for all cultivars was negative for bothDcS-ILP and SNP, whereas the overall genetic differentiation across all market classes, as measured by FST, was comparable for both marker systems. ForDcS-ILPs 90–92% of total genetic variation could be attributed to the differences within the inferred clusters, whereas for SNPs the values ranged between 91 to 93%. Discriminant Analysis of Principal Components enabled the separation of eight groups cultivars depending mostly on their market type affiliation. Three groups of cultivars, i.e. Amsterdam, Chantenay and Imperator, were characterized by high homogeneity regardless of the marker system used for genotyping.ConclusionsBoth marker systems used in the study enabled detection of substantial variation among carrot plants of different market types, therefore can be used in germplasm characterization and analysis of genome relationships. The presented results likely reveal the actual genetic diversity structure within the western carrot gene pool and point at possible discrepancies within the cultivars’ passport data. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |