Can appliances understand the behavior of elderly via machine learning? A feasibility study
Autor: | Kazuhiro Yoshiuchi, Tomoya Koike, Björn Schuller, Yoshiharu Yamamoto, Kun Qian |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Ageing society
Computer Networks and Communications Computer science business.industry 020209 energy Deep learning Life quality Intelligent decision support system 020206 networking & telecommunications 02 engineering and technology Machine learning computer.software_genre Computer Science Applications Hardware and Architecture Home automation Signal Processing 0202 electrical engineering electronic engineering information engineering Artificial intelligence ddc:004 Internet of Things business computer Information Systems |
Popis: | Over the last half decade, fast development of the Internet of Things and machine learning (ML) made it feasible to leverage the power of artificial intelligence to facilitate a variety of intelligent systems in smart home. Nevertheless, the studies on designing specific computing technologies for helping elderly to enjoy a comfortable, convenient, and independent daily life are extremely limited. On the one hand, there are increasingly growing demands from the ageing society to implement the cutting edge technology enabling a better life quality for the elderly. On the other hand, there is still a lack on fundamental investigations, applicable infrastructures, and advanced data-driven frameworks. To this end, we propose a novel machine framework for analyzing the daily life behavior of elderly—all in this study are living alone—by the data collected from their home appliances, i.e., television and refrigerator. First, the interevent intervals for the use of the appliances collected in one month from 76 elderly are the raw data to describe the behaviors. Then, three ML paradigms are investigated and compared, which include “classic” ML methods and the state-of-the-art deep learning approaches. Finally, we indicate the current findings and limitations in this feasibility study. Experimental results demonstrate that, our proposed method can reach performance peak at an unweighted average recall of 58.7% (chance level: 50.0%) in a subject-independent test for classifying symptom/nonsymptom days. |
Databáze: | OpenAIRE |
Externí odkaz: |