First integrals and phase portraits of planar polynomial differential cubic systems with the maximum number of invariant straight lines
Autor: | Cristina Bujac, Jaume Llibre, Nicolae Vulpe |
---|---|
Rok vydání: | 2021 |
Předmět: |
Phase portrait
Invariant polynomial Applied Mathematics 010102 general mathematics First integrals Multiplicity (mathematics) 01 natural sciences 010101 applied mathematics Combinatorics Planar Discrete Mathematics and Combinatorics Algebraic curve 0101 mathematics Invariant (mathematics) Cubic function Mathematics |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) |
Popis: | In the article Llibre and Vulpe (Rocky Mt J Math 38:1301–1373, 2006) the family of cubic polynomial differential systems possessing invariant straight lines of total multiplicity 9 was considered and 23 such classes of systems were detected. We recall that 9 invariant straight lines taking into account their multiplicities is the maximum number of straight lines that a cubic polynomial differential systems can have if this number is finite. Here we complete the classification given in Llibre and Vulpe (Rocky Mt J Math 38:1301–1373, 2006) by adding a new class of such cubic systems and for each one of these 24 such classes we perform the corresponding first integral as well as its phase portrait. Moreover we present necessary and sufficient affine invariant conditions for the realization of each one of the detected classes of cubic systems with maximum number of invariant straight lines when this number is finite. |
Databáze: | OpenAIRE |
Externí odkaz: |