Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC

Autor: Eduardo J. de Mericia, Larissa C. O. Santos, Carlos Alexandre Wuensche, Vincenzo Liccardo, Camila P. Novaes, Jacques Delabrouille, Mathieu Remazeilles, Filipe B. Abdalla, Chang Feng, Luciano Barosi, Amilcar Queiroz, Thyrso Villela, Bin Wang, Jiajun Zhang, Alessandro Marins, Andre A. Costa, Elisa G. M. Ferreira, Ricardo G. Landim, Marcelo V. dos Santos
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Rok vydání: 2022
Předmět:
Zdroj: Astronomy and Astrophysics-A&A
Astronomy and Astrophysics-A&A, 2023, 671, pp.A58. ⟨10.1051/0004-6361/202243804⟩
ISSN: 0004-6361
DOI: 10.48550/arxiv.2204.08112
Popis: To recover the 21 cm hydrogen line, it is essential to separate the cosmological signal from the much stronger foreground contributions at radio frequencies. The BINGO radio telescope is designed to measure the 21 cm line and detect BAOs using the intensity mapping technique. This work analyses the performance of the GNILC method, combined with a power spectrum debiasing procedure. The method was applied to a simulated BINGO mission, building upon previous work from the collaboration. It compares two different synchrotron emission models and different instrumental configurations, in addition to the combination with ancillary data to optimize both the foreground removal and recovery of the 21 cm signal across the full BINGO frequency band, as well as to determine an optimal number of frequency bands for the signal recovery. We have produced foreground emissions maps using the Planck Sky Model, the cosmological Hi emission maps are generated using the FLASK package and thermal noise maps are created according to the instrumental setup. We apply the GNILC method to the simulated sky maps to separate the Hi plus thermal noise contribution and, through a debiasing procedure, recover an estimate of the noiseless 21 cm power spectrum. We found a near optimal reconstruction of the Hi signal using a 80 bins configuration, which resulted in a power spectrum reconstruction average error over all frequencies of 3%. Furthermore, our tests showed that GNILC is robust against different synchrotron emission models. Finally, adding an extra channel with CBASS foregrounds information, we reduced the estimation error of the 21 cm signal. The optimisation of our previous work, producing a configuration with an optimal number of channels for binning the data, impacts greatly the decisions regarding BINGO hardware configuration before commissioning.
Comment: Submitted to A&A
Databáze: OpenAIRE