Well-Posedness and input-output stability for a system modelling rigid structures floating in a viscous fluid
Autor: | Denis Matignon, Gastón Vergara-Hermosilla, Marius Tucsnak |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO) |
Rok vydání: | 2020 |
Předmět: |
Input/output
0209 industrial biotechnology infinite dimensional systems Plane (geometry) Function space 020208 electrical & electronic engineering Linear system Mathematical analysis input-output stability 02 engineering and technology Viscous liquid Well-posed systems Transfer function 020901 industrial engineering & automation Control and Systems Engineering Free surface 0202 electrical engineering electronic engineering information engineering transfer function [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] [MATH]Mathematics [math] Actuator Mathematics |
Zdroj: | IFAC-PapersOnLine. 53:7491-7496 |
ISSN: | 2405-8963 |
Popis: | We study a PDE based linearized model for the vertical motion of a solid floating at the free surface of a shallow viscous fluid. The solid is controlled by a vertical force exerted via an actuator. This force is the input of the system, whereas the output is the distance from the solid to the bottom. The first novelty we bring in is that we prove that the governing equations define a well-posed linear system. This is done by considering adequate function spaces and convenient operators between them. Another contribution of this work is establishing that the system is input-output stable. To this aim, we give an explicit form of the transfer function and we show that it lies in the Hardy space H∞ of the right-half plane. |
Databáze: | OpenAIRE |
Externí odkaz: |