Modified Particle Swarm Optimization for Blind Deconvolution and Identification of Multichannel FIR Filters

Autor: Vahid Tabataba Vakili, Vahid Khanagha, Ali Khanagha
Přispěvatelé: BMC, Ed., Geometry and Statistics in acquisition data (GeoStat), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: EURASIP Journal on Advances in Signal Processing
EURASIP Journal on Advances in Signal Processing, 2010, Volume 2010, ⟨10.1155/2010/716862⟩
EURASIP Journal on Advances in Signal Processing, Vol 2010 (2010)
EURASIP Journal on Advances in Signal Processing, Vol 2010, Iss 1, p 716862 (2010)
ISSN: 1687-6172
1687-6180
DOI: 10.1155/2010/716862⟩
Popis: International audience; Blind identification of MIMO FIR systems has widely received attentions in various fields of wireless data communications. Here, we use Particle Swarm Optimization (PSO) as the update mechanism of the well-known inverse filtering approach and we show its good performance compared to original method. Specially, the proposed method is shown to be more robust against lower SNR scenarios or in cases with smaller lengths of available data records. Also, a modified version of PSO is presented which further improves the robustness and preciseness of PSO algorithm. However the most important promise of the modified version is its drastically faster convergence compared to standard implementation of PSO.
Databáze: OpenAIRE