Extremal exponents of random products of conservative diffeomorphisms

Autor: Dominique Malicet, Pablo G. Barrientos
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: We show that for a $$C^1$$ -open and $$C^{r}$$ -dense subset of the set of ergodic iterated function systems of conservative diffeomorphisms of a finite-volume manifold of dimension $$d\ge 2$$ , the extremal Lyapunov exponents do not vanish. In particular, the set of non-uniform hyperbolic systems contains a $$C^1$$ -open and $$C^r$$ -dense subset of ergodic random products of independent conservative surface diffeomorphisms.
Databáze: OpenAIRE