Extremal exponents of random products of conservative diffeomorphisms
Autor: | Dominique Malicet, Pablo G. Barrientos |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Surface (mathematics)
Pure mathematics Mathematics::Dynamical Systems Dense set General Mathematics 010102 general mathematics Lyapunov exponent Dynamical Systems (math.DS) 01 natural sciences Manifold Hyperbolic systems Set (abstract data type) symbols.namesake Iterated function system 0103 physical sciences symbols FOS: Mathematics Ergodic theory 010307 mathematical physics 0101 mathematics Mathematics - Dynamical Systems Mathematics |
Popis: | We show that for a $$C^1$$ -open and $$C^{r}$$ -dense subset of the set of ergodic iterated function systems of conservative diffeomorphisms of a finite-volume manifold of dimension $$d\ge 2$$ , the extremal Lyapunov exponents do not vanish. In particular, the set of non-uniform hyperbolic systems contains a $$C^1$$ -open and $$C^r$$ -dense subset of ergodic random products of independent conservative surface diffeomorphisms. |
Databáze: | OpenAIRE |
Externí odkaz: |